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ABSTRACT
....................................................................................................................................................

Objectives To examine the feasibility of deploying a virtual web service for sharing data within a research network, and
to evaluate the impact on data consistency and quality.
Material and Methods Virtual machines (VMs) encapsulated an open-source, semantically and syntactically interopera-
ble secure web service infrastructure along with a shadow database. The VMs were deployed to 8 Collaborative
Pediatric Critical Care Research Network Clinical Centers.
Results Virtual web services could be deployed in hours. The interoperability of the web services reduced format mis-
alignment from 56% to 1% and demonstrated that 99% of the data consistently transferred using the data dictionary
and 1% needed human curation.
Conclusions Use of virtualized open-source secure web service technology could enable direct electronic abstraction of
data from hospital databases for research purposes.
....................................................................................................................................................
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Enhancing the Learning Health care System (LHS) is a national
goal,1 where data obtained during care and operations contrib-
ute to the development of knowledge and, in turn, translates
into evidence-based practice and health system improvements.
Efforts to advance the LHS have accelerated through the estab-
lishment of PCORnet2 (www.pcornet.org) via the Patient
Centered Outcomes Research Institute with the promise to de-
liver a national network for clinical outcomes research. The ob-
jective is to improve outcomes by leveraging electronic health
records (EHRs) as a national research resource. However, to do
so, networks need to resolve issues of data governance, central
for the LHS and a crucial aspect of interoperability,3,4 so that
large scale collaborative initiatives are not overwhelmed by the
diversity and multitude of clinical data along with competing
stakeholder interests.5 Success of these and other LHS initia-
tives will be measured by the speed with which new networks
establish scalable multisite collaborations for observational
studies6 while not being overcome by data governance and in-
teroperability issues. We present a case report on the design,
deployment, and initial evaluation of a federated infrastructure
for a national pediatric network based on a virtual machine

(VM) framework that can be used in a LHS to addresses data
governance and interoperability.

Background
Data sharing via federated networks for the purpose of con-
ducting clinical studies include costly, complex, time consum-
ing, and potentially error-prone activities. Even after creating
written protocols, clinicians must dedicate substantial time and
effort collecting data and communicating to achieve data con-
sistency.7 Data governance is a disciplined method through
which resources are formally managed with a focus on data
consistency and quality.8 An approach that can improve data
governance has multiple implications for clinical research,
including an emphasis on the interoperability of clinical data
and the need for rigorous approaches to ensure the utility and
validity of clinical data used for research purposes.9

Interoperability, composed of both syntactic and semantic
components, has been identified as a mechanism to support
national health systems initiatives.10 Interoperability supports
collaboration between organizations,11 having demonstrated
beneficial impact on clinical trials, EHR information
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systems,12,13 and maintenance of patient data across health
care organizations.14 There are multiple approaches to data
governance and interoperability, ranging from technologies that
are data model agnostic to locally focused models to globally
constrained models.

The Mini-Sentinel network15,16 deploys a distributed query
architecture based on submit-run-return procedures using the
data model agnostic PopMedNet17 (www.popmednet.org) tech-
nology. The Mini-Sentinel approach does not employ a central-
ized database; instead, members of the network are
responsible for their own data that are linked by PopMedNet.
Queries are broadcast to PopMedNet client sites and are then
reviewed and run by site-level data stewards. The stewards
review the results and securely return them to the requesting
investigator. Multiple networks within PCORnet use the
PopMedNet query architecture.18,19

The Scalable Collaborative Infrastructure for a Learning
Healthcare System (SCILHS) was designed to avoid limitations
of global top-down solutions by using locally focused solutions
with a vibrant user and developer base.20 Components of
SCILHS’s PCORnet instantiation include the widely adopted
Shared Health Research Information Network (SHRINE)21 and
Informatics for Integrating Biology and the Bedside (i2b2).22

The i2b2 system stores data in a locally informed star schema
relational model to simplify query strategies.22 The SHRINE is
composed of an aggregator/adaptor model that broadcasts
queries to adaptors at multiple sites.

The Translational Research Informatics and Data
Management Grid (TRIAD)23 uses a grid approach to create a
homogenous view of multisite data sources through a reposi-
tory of object models, thus supporting a global view instead of
a strictly local one. TRIAD integrated the caGrid middle-
ware,24,25 a global model technology developed for the Cancer
Biomedical Informatics Grid (caBIG).26 A grid architecture
approach is essentially a federated collection of heterogeneous
and geographically dispersed information systems. The
dangers of integrating the caGrid architecture include limited
adoption, lack of end-user facing applications, external
dependencies on National Cancer Institute systems, and con-
cerns of scalability of the technology.23 The demonstrated abil-
ity to support data governance in federated applications12 and
securely manage data transmission are strengths of the grid
architecture. A method for easily deploying the caGrid infra-
structure was elusive, and the complexity of the grid architec-
ture increased the difficulty of deployment. Hence, the
traditional resource intensive process was cost prohibitive for
all but a handful of well-funded projects.

We believed that the costs and complexity of grid deploy-
ment could be overcome through virtualization technology. In
this paper, we describe the development and assessment of
open-source secure web services, built using the caGrid mid-
dleware used by TRIAD,23 deployed at 8 children’s hospitals in
the Collaborative Pediatric Critical Care Research Network
(CPCCRN).27 A root problem in the traditional caGrid deploy-
ment was the tight coupling of the local data sources, such as
administrative databases or EHRs, with the complex web

service. Each site needed to link their data elements to intero-
perable components and then build a grid service. This was a
complex, multistep process that required collaboration between
domain experts, informaticists, and software engineers. To
overcome this, we developed a new approach using VMs run-
ning the full caGrid technology stack, along with a database
(the shadow database) that served as a limited version of an
institution’s data.

METHODS
Using caGrid tools, experienced informaticists and domain
experts built a platform-independent virtualized secure web
service called the Pediatric Intensive Care Unit Grid (picuGrid).
The system was designed to support an ongoing CPCCRN
observational study called the Core Clinical Data Project
(CCDP), conducted with Institutional Review Board approval
and data sharing agreements. The data consist of descriptive
elements such as patient demographics, length of hospital and
Pediatric Intensive Care Unit (PICU) stays, procedure codes,
and diagnosis codes. The data are typically aggregated on an
annual basis and describe the characteristics of PICU stays at
the CPCCRN Clinical Centers. Annual CCDP data supports
hypothesis generation, preliminary power analyses, and patient
recruitment projections for CPCCRN studies.27

The virtualized system was developed, tested, and deployed
at the CPCCRN Data Coordinating Center (DCC) at the University
of Utah. The system, depicted in figure 3, was then deployed at
the following 8 CPCCRN Clinical Centers: Children’s Hospital Los
Angeles, Children’s Hospital of Michigan, Children’s Hospital of
Philadelphia, Children’s National Medical Center, Mattel
Children’s Hospital at UCLA, Phoenix Children’s Hospital, CS Mott
Children’s Hospital at the University of Michigan, and University
of Pittsburgh Medical Center. We evaluated consistency and data
quality of the data set to assess potential effects of the picuGrid
virtualized environment.

Evaluation
Since the extraction, transform, and load (ETL) process that
populates the shadow database used the 2011 CCDP data set,
we assessed the process using the 2012 data obtained via
picuGrid in parallel with the traditional CCDP file submission
process. The total evaluation set across the 8 sites consisted of
18 551 rows. A row was flagged by the ETL process as having
an error if the row did not load properly because of at least 1 of
the 54 fields having a format inconsistency (ie, format mis-
alignment) and/or a nonvalid dictionary value.

RESULTS
The results focus on (1) an overview of the picuGrid implemen-
tations, (2) comparing field format misalignments using the tra-
ditional approach with field format misalignments using the
picuGrid approach, (3) examining levels of curation needed to
load the 2012 data into the shadow database (reflecting the
extent to which ETL scripts need to be modified), and (4) an
analysis of scalability of the VM client and server grid
architecture.
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picuGrid deployment overview
The picuGrid VMs were successfully deployed to all CPCCRN
site hospitals; deployment took roughly 3 hours for each site.
Establishing the ETL process to load 2011 data into the shadow

database ranged from 1 to 4 hours per site. The sites reused
the 2011 ETL processes and did not require a new ETL script
for the 2012 CCDP data set. Successful secure data transfer
was demonstrated for all 8 CPCCRN sites.

Figure 1: The picuGrid architecture was designed using a chaperoned Application Program Interface (API); firewall
settings were controlled by the centers with picuGrid being instantiated between the external and internal firewall of the
site, and local IT departments could set additional security restrictions to limit connections to the VM. Secure data trans-
mission between the sites and the DCC was enforced through caGrid credentials within each VM that were validated by
a third party credentialing service. Unlike traditional grid architecture, we limited the system so that only the DCC could
access data and clinical sites and the other Clinical Centers could not view or access other sites. All data up to and
including the shadow database were under the direct control of the local site personnel. The shadow database had a
dictionary table for updating value sets for each site. The DCC could pull data using the chaperoned API but could not
access the shadow database directly. The solid arrow shows data pulled from the administration database to a comma
separated values (CSV) file and then pushed past the internal firewall and into the picuGrid shadow database. Many clin-
ical research studies use data from the active EHR or the enterprise data warehouse (EDW). Pulling data such as labora-
tory test results or vital signs would be beneficial to most of the network clinical studies. The dotted lines from the EHR
and EDW represent those desired future data sources. Since each site has a MySQL database, the training needed to
access the data is the standard querying of databases (ie, Structured Query Language, SQL). Each site received a user
guide to facilitate installation and support of the system.
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Syntactic and semantic interoperability: field format
misalignments and data curation
A field format misalignment occurred when data were submit-
ted in a format that differed from that specified by the research
protocol. Figure 2A displays 4 years of format misalignment
data for the 8 Clinical Centers, for their traditional submission
process (solid line with square symbols). Over the 4 years, the
average format misalignments drift upward from 44% to 65%.

The picuGrid’s web service resulted in substantially reduced
format misalignments (1% for 2012 across all Centers, “X”
symbol on figure 2A). That reduction primarily resulted from
the picuGrid ETL process correcting formatting before the data
file was loaded into the database and submitted to the DCC.

We categorized rows in the dataset as needing low,
moderate, or high levels of curation depending upon the maxi-
mum level of curation associated with any field in the row
(figure 2B). Using the 2011 picuGrid ETL process, 91% of the
rows in the 2012 data sets loaded correctly into the shadow
database. An additional 8% of the rows of data needed moder-
ate levels of curation that were addressed by updating the dic-
tionary. Specifically, fields for race, ethnicity, admission type,
discharge disposition, and payer had new values that were not
in the 2011 dictionary. Adding the value for a new payer at one
site accounted for 2% of the total data being correctly loaded,
and updating an ethnicity value at another site accounted for
4% of the total data. The final 1% required clarification related
to diagnosis codes and zip codes; values had to be examined
by a human curator and corrected.

Virtual system scalability
A concern with the grid architecture is its ability to scale.23

Given an open-source code base that can be replicated as
needed without licensing costs, an advantage is the ability to
cost-effectively create multiple clients and servers to scale the
amount of data that can be queried. Figure 3 demonstrates the
ability to improve response time through parallelization by
increasing the number of virtualized servers and clients28 for
the picuGrid architecture.

DISCUSSION
We successfully leveraged machine virtualization to ease the
deployment of complex grid technologies. The virtualized
picuGrid system reduced the deployment time from months to
hours, thus allowing hospital deployment teams to have, within
minutes, a fully operational secure grid web service. Traditional
caGrid implementation has been hampered by the direct con-
nection between the logical model and the hospital databases
as well as the informatics expertise required to generate the
Application Program Interface (API). Virtualization and using a
shadow database enabled us to eliminate many of the infor-
matics requirements at the individual hospitals. By decoupling
the web service from direct interactions with the organization’s
data, we also decoupled the need for the local hospital infor-
mation technology team to learn the complex traditional grid
deployment processes. In picuGrid, the API was centrally devel-
oped and eliminated the need for hospital technology teams to
learn how to navigate the complex ecosystem of caGrid
applications.

Limitations
This was a single point in time feasibility evaluation. While sig-
nificant benefits have been hypothesized, the challenges and
benefits of directly transferring data to the DCC from the
Clinical Center environments were not evaluated. Although
many of the caBIG tools were integrated into the new National
Cancer Informatics Program and remain available as open-
source code, future sustainability could be problematic with the
retirement of the caBIG program in 2012; an alternative for
sustainability is the public private partnership of TRIAD.29

Figure 2: (A) A field was defined as being misaligned
if at least 1 row had incorrectly formatted values.
Format misalignments were measured as the percent-
age of incorrectly formatted fields out of a total of 54
fields specified by the research protocol. (B) We
assisted sites to load their 2012 data into the picuGrid
system. If the row of 2012 data loaded with no ETL
process content errors, then the record was counted
as “Reused ETL: Low Curation.” If the dictionary table
in the picuGrid shadow database needed to be
updated to account for a new value, then the record
was counted as “Dictionary: Moderate Curation.” If a
human needed to clarify and potentially change the
data in the data file, then the record was labeled as
“Clarification: High Curation.” We assisted 1 site in
reconfiguring their ETL process. This change was nec-
essary due to a field being conjoined from 2 fields in
the 2012 data set. The fields were separated and
loaded through a simple change to the ETL process.
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CONCLUSIONS
Using virtualization and open-source software, we were able to
quickly and easily deploy a complex technology solution. We
demonstrated the feasibility of securely moving data within the
CPCCRN research network. Using semantically and syntacti-
cally interoperable secure web services, we showed potential
improvements in data quality and data governance implications
for LHS and PCORnet implementations.

Multisite research networks typically implement complex
study protocols that involve abstraction of extensive data,
including laboratory values, vital signs, demographics, medica-
tion, and study-specific data, with reentry of those values into
a research database. The abstraction and data reentry process
requires personnel and time and contributes to the costs of
clinical observational and interventional studies. Use of virtual-
ized secure web service technology with strong data gover-
nance could enable direct electronic data abstraction from
hospital databases and speed adoption of the Learning
Healthcare System.
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