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A B S T R A C T

Background: Separate trials to evaluate therapeutic hypothermia after paediatric cardiac arrest for out-of-hos-
pital and in-hospital settings reported no statistically significant differences in survival with favourable neuro-
behavioral outcome or safety compared to therapeutic normothermia. However, larger sample sizes might detect
smaller clinical effects. Our aim was to pool data from identically conducted trials to approximately double the
sample size of the individual trials yielding greater statistical power to compare outcomes.
Methods: Combine individual patient data from two clinical trials set in forty-one paediatric intensive care units
in USA, Canada and UK. Children aged at least 48 h up to 18 years old, who remained comatose after re-
suscitation, were randomized within 6 h of return of circulation to hypothermia or normothermia (target 33.0 °C
or 36.8 °C). The primary outcome, survival 12 months post-arrest with Vineland Adaptive Behaviour Scales,
Second Edition (VABS-II) score at least 70 (scored from 20 to 160, higher scores reflecting better function,
population mean= 100, SD=15), was evaluated among patients with pre-arrest scores ≥70.
Results: 624 patients were randomized. Among 517 with pre-arrest VABS-II scores ≥70, the primary outcome
did not significantly differ between hypothermia and normothermia groups (28% [75/271] and 26% [63/246],
respectively; relative risk, 1.08; 95% confidence interval [CI], 0.81 to 1.42; p=0.61). Among 602 evaluable
patients, the change in VABS-II score from baseline to 12 months did not differ significantly between groups
(p=0.20), nor did, proportion of cases with declines no more than 15 points or improvement from baseline
[22% (hypothermia) and 21% (normothermia)]. One-year survival did not differ significantly between hy-
pothermia and normothermia groups (44% [138/317] and 38% [113/ 297], respectively; relative risk, 1.15;
95% CI, 0.95 to 1.38; p=0.15). Incidences of blood-product use, infection, and serious cardiac arrhythmia
adverse events, and 28-day mortality, did not differ between groups.
Conclusions: Analysis of combined data from two paediatric cardiac arrest targeted temperature management
trials including both in-hospital and out-of-hospital cases revealed that hypothermia, as compared with nor-
mothermia, did not confer a significant benefit in survival with favourable functional outcome at one year.

Introduction

Therapeutic hypothermia (hypothermia) as compared to ther-
apeutic normothermia (normothermia) for treatment of comatose
children resuscitated after out-of-hospital or in-hospital cardiac arrest

did not confer a significant benefit in survival with favourable func-
tional outcome in two independent, parallel trials which utilized
identical study protocols [1,2]. Current paediatric guidelines re-
commend either hypothermia or normothermia for target temperature
management (TTM) [3]. However, since effect sizes tested were in the
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range of 10–20 percent, uncertainty persists regarding optimal tem-
perature management.

In the broad paediatric age range, there are multiple differences
between cardiac arrests occurring in the out-of-hospital versus in-hos-
pital setting including patient demographics, underlying pre-existing
pathology, aetiology of cardiac arrest, response times and resuscitative
skills of the initial responders, and survival rates [4]. These differences
informed a decision by the THAPCA trials investigators to enrol patients
into two separate independent parallel clinical trials (ClinicalTrials.gov
NCT00880087 and NCT00878644). However, a major challenge in
paediatric cardiac arrest trials is recruitment of sufficiently large sample
sizes to detect small clinically significant differences [5]. As the un-
derlying mechanism for potential benefit from hypothermia after a
hypoxic-ischemic insult is similar in both paediatric populations, the
THAPCA trial investigators proposed a secondary analysis of the com-
parative efficacy and safety of the two temperature interventions in the
combined population of out-of-hospital and in-hospital cardiac arrest
study cohorts. We report here the results of the pooled data analysis
from these two trials which used identical protocols.

Methodology

Design

The two THAPCA trials were conducted in paediatric intensive care
units (ICUs) at 41 enrolling children’s hospitals in the United States,
Canada, and United Kingdom. The rationale, study design, outcome
selection process, protocol summary, 12-month pilot vanguard phase
and individual trial outcomes were previously published [6–8].
Funding for both trials was from the National Heart, Lung, and Blood
Institute (NHLBI). The trial protocols differed only in the inclusion
criteria definition of out-of-hospital and in-hospital cardiac arrest [1,2].
The institutional review boards of all participating sites and the data-
coordinating centre approved the protocol and informed consent
documents. Site research coordinators collected all data, and statisti-
cians at the data-coordinating centre (University of Utah) performed all
analyses. Site training, data management and site monitoring were
described in the Supplementary Appendix of each trial report [1,2]. All
site investigators vouched for their submitted data. The current pooled
study was approved by the THAPCA executive committee prior to
analysis of either of the THAPCA trials.

Patient population

Children ≥48 h and<18 years old who sustained cardiac arrest,
required chest compressions for≥ two minutes, and required me-
chanical ventilation after return of circulation, met inclusion criteria.

Major exclusion criteria were scores of 5 or 6 on the Glasgow Coma
Scale motor response subscale (scores range from 1 to 6, lower scores
indicate worse function), inability to randomize within 6 h of return of
circulation, active and refractory severe bleeding, pre-existing illness
with life expectancy less than 12 months, and lack of commitment to
aggressive care. Full exclusion criteria lists were provided in the
Supplementary Appendix of the two trial reports [1,2]. Written in-
formed consent from a parent or legal guardian was required.

Randomization and intervention

Eligible patients were randomized to hypothermia or normothermia
in a 1:1 ratio using permuted blocks stratified by clinical centre and age
(younger than 2 years, 2–11 years, and 12 years or older).

Targeted temperature management (TTM) was actively maintained
for 120 h in both groups, as previously described [1,2]. Participants
assigned to hypothermia were pharmacologically paralyzed, sedated
and cooled (or warmed if indicated) by surface cooling using a Blan-
ketrol III cooling unit (Cincinnati SubZero, Cincinnati) with mattresses

applied anteriorly and posteriorly, to achieve and maintain 33 °C (range
32–34 °C) core temperature for 48 h. They were rewarmed over 16 h or
longer to target temperature 36.8 °C (range 36–37.5 °C) which was ac-
tively maintained throughout the remainder of the 120 h intervention
period. Patients randomized to normothermia received identical care
except core temperature was actively maintained at 36.8 °C (range
36–37.5 °C) for 120 h with the cooling unit. Dual central temperature
monitoring (oesophageal, rectal, or bladder) and a servo-control mode
were used. For patients supported with extracorporeal membrane
oxygenation (ECMO) at the time of randomization or later, temperature
was controlled with ECMO using a single central temperature monitor.
All other aspects of care were determined by clinical teams.

Outcomes

The primary outcome was survival with favourable neurobehavioral
outcome at 12 month follow-up, defined as an age-corrected standard
score ≥70 on the Vineland Adaptive Behaviour Scales, Second Edition
(VABS-II) [9]. The VABS-II has an age-corrected mean score of 100
(standarddeviation,15]; higher scores indicate better performance.
VABS-II data were collected centrally (Kennedy Krieger Institute, Bal-
timore, MD) via telephone by a trained interviewer blinded to treat-
ment assignment. As pre-specified in the protocol, enrolled children
with pre-arrest VABS-II scores below 70 (based on data from caregiver
questionnaire completed at each site within 24 h of randomization)
were excluded only from the primary efficacy analysis. Patients with no
baseline VABS-II available were considered eligible for the primary
analysis if their baseline Paediatric Overall Performance Category
(POPC) and Paediatric Cerebral Performance Category (PCPC) scores
were in normal or mild disability categories[10,11]. Scores on these
scales range from 1 to 6, with lower scores representing less disability;
patients with scores of 1 or 2 on both scales were eligible for the pri-
mary analysis.

Secondary outcomes were change in neurobehavioral function,
measured as the difference from pre-arrest baseline to 12 month mea-
surement on the VABS-II (assigning deceased cases and those with

lowest possible VABS-II scores worst possible outcomes, regardless
of baseline function) and survival at 12 months. Safety outcomes in-
cluded the incidences of blood product use, infection, and serious ar-
rhythmias through seven days, and 28-day mortality. The outcome
assessment methodology was previously described [1,2].

Statistical analysis

Individual patient data from both primary trial datasets were
combined. Identical definitions, coding, reference units and data col-
lection processes were used for each trial enabling combination without
loss of data items. The efficacy analysis for the primary outcome was
performed using a pre-specified modified intention-to-treat approach in
both trials, excluding children with poor pre-arrest neurobehavioral
function. Secondary efficacy outcomes were analysed among all chil-
dren. Safety analyses were done by treatment received. The primary
outcome and 12 month mortality were compared between assigned
treatment groups using a Cochran-Mantel-Haenszel test stratified by
categorized age and study. Change in VABS-II was analysed using van
Elteren’s modification of the Mann-Whitney test [12], stratifying by
categorized age and study, treating death as the worst outcome and the
lowest possible VABS-II score as the second-worst outcome. For this
exploratory investigation, significance was declared at the 0.05 for all
tests. The probability of survival to one year was evaluated by com-
paring survival curves between arms using a log- rank test stratified by
age category. Univariate analysis of prognostic risk factors for survival
independent of treatment group were analysed. Multivariable analysis
for prognostic factors for neurobehavioral outcome have been pre-
sented previously for each trial [13,14]. Analyses were performed using
SAS software, version 9.4 (SAS Institute, Inc., Cary, NC).
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Results

Characteristics of study cohort

Both trials commenced on September 1, 2009 with THAPCA−OH
patients enrolled through December 31, 2012 at 36 centres in USA and
Canada (2 did not recruit) and THAPCA-IH patients enrolled until
February 27, 2015 at 37 sites in the USA, Canada and UK (9 sites did
not enrol). Forty-seven centres

in total participated in at least one of the THAPCA trials, with 6
centres not randomizing at least one case. The full CONSORT Diagram
is described in Appendix Fig 1. A total of 4146 patients met inclusion
criteria and were screened; 1221 had no trial exclusion criteria and
were eligible for enrolment; and 624 were enrolled, 321 randomized to
hypothermia and 303 to normothermia. Eight patients, who were as-
signed to hypothermia and three normothermia, did not receive an
intervention and one normothermia patient received hypothermia
therapy. Five hundred and seventeen patients had VABS-II scores ≥70
at baseline, prior to their cardiac arrest, and were eligible for the pri-
mary outcome assessment.

The baseline characteristics of the two temperature treatment
groups were similar (Table 1).

Overall median age was 1.5 years IQR [0.3, 7.1] with 63% male;
71% had one or more pre-existing medical condition most frequent
being cardiac, lung or airway, and neurological conditions. Thirty
percent (190/624) had a primary cardiac aetiology for their arrest, 9%
(57/624) presented with a shockable rhythm (ventricular fibrillation or
ventricular tachycardia); and the median estimated duration of chest
compressions was 25min IQR [12, 42.5]. Time from return of sponta-
neous circulation after cardiac arrest to target temperature following
randomization for hypothermia group was Median 6.9 h [Interquartile
range (IQR) 5.6 to 8.8] and normothermia group 6.4 h [IQR 5.3 to 8.4].

Outcomes

The proportion of survivors with the primary outcome VABS-II score
≥70 at 12 months was not significantly different between those treated
with hypothermia (28%) compared to the normothermia intervention
(26%); relative risk 1.08; 95% confidence interval [CI] 0.81 to 1.42;
p=0.61. In patients included in the primary analysis who died or had a
profound (VABS-II< 45 or lowest) or moderate to severe disability
(VABS-ll 45–69), there was also no significant difference in proportion
of patients treated with either therapy (p=0.4) (Table 2). The sec-
ondary outcome of one year change in VABS-ll score from baseline
score did not differ between groups (p= 0.20); nor did the proportion
in whom the VABS-ll score decreased by no more than 15 points (1
standard deviation) or improve differ (hypothermia 22% versus nor-
mothermia 21%) (Table 2).

Survival at 12 months for 614 patients, whose outcome status was
known, did not differ between groups (hypothermia 44% vs. nor-
mothermia 38%; relative risk 1.15; 95% CI 0.95–1.38; p=0.15)
(Table 2). Survival duration was longer for patients receiving hy-
pothermia; (Fig. 1a, p= 0.045). Sensitivity analysis revealed that this
difference was due to the greater number of deaths occurring in the
normothermia groupbetween days 0–3 (Fig. 1b, p= 0.91; Supple-
mental Figure 2, p=0.003). Specifically, a greater number of deaths
occurred on day 0 in the normothermia group (19 versus 5) and the
majority (12/19) were due to cardiovascular failure/futility (Table 3).
By 12 months, the proportions of deaths by individual causes were si-
milar for patients treated with hypothermia and normothermia. The
majority of deaths were attributed to brain death (24.6% versus
24.9%), withdrawal of medical support in view of poor neurological
prognosis (35.8 versus 31.4%), or cardiovascular failure/futility (21.2%
versus 24.9%) (Table 3).

Prognostic factors for survival and for survival at 12 months with
VABS-ll ≥70 were analysed (Supplemental Table 1). A cardiac

aetiology of cardiac arrest, initial rhythm of ventricular fibrillation or
ventricular tachycardia, shorter duration of cardiopulmonary re-
suscitation, fewer epinephrine doses, and cardiac arrest occurrence
during a weekday (versus weekend) and during the day (versus night)
were each associated with improved survival, independent of treatment
arm. Children whose cardiac arrest occurred in-hospital compared to
out-of-hospital were almost twice as likely to survive (OR 1.79 [1.29,
2.49]) and three times as likely to survive with VABS-ll ≥70 (OR 3.09,
95% CI [2.04, 4.69]) (see Supplemental Table 1).

Safety

Safety outcome data were available for 314 in the hypothermia
group and 298 in the normothermia group. The incidences of blood-
product use, infection, and serious arrhythmias within seven days did
not differ between these groups; nor did 28 day mortality significantly

Table 1
Demographics by Treatment.

Treatment Assigned

Hypothermia
(N=321)

Normothermia
(N=303)

P-value

Age at Randomization (years) 0.0721

N 321 303
Median [Q1 - Q3] 1.7 [0.4 - 7.6] 1.2 [0.3 - 6.5]

Age Group at Randomization 0.5092

< 2 years 173 (53.9%) 177 (58.4%)
2-11 years 96 (29.9%) 80 (26.4%)
> =12 years 52 (16.2%) 46 (15.2%)

Male 199 (62.0%) 193 (63.7%) 0.6602

Pre-existing Conditions
No pre-existing condition 94 (29.3%) 88 (29.0%) 0.9472

Lung or airway disease 87 (27.1%) 89 (29.4%) 0.5292

Neurologic condition 87 (27.1%) 67 (22.1%) 0.1482

Gastrointestinal disorder 69 (21.5%) 72 (23.8%) 0.4992

Prenatal condition 59 (18.4%) 64 (21.1%) 0.3892

Congenital heart disease 111 (34.6%) 112 (37.0%) 0.5352

Other pre-existing condition 46 (14.3%) 53 (17.5%) 0.2802

Primary aetiology of cardiac
arrest

0.6632

Cardiac 99 (30.8%) 91 (30.0%)
Respiratory 156 (48.6%) 157 (51.8%)
Other/Unknown 66 (20.6%) 55 (18.2%)

Initial rhythm noted by EMS
or hospital

0.9032

Asystole 99 (30.8%) 97 (32.0%)
Bradycardia 104 (32.4%) 104 (34.3%)
Pulseless electrical activity
(PEA)

58 (18.1%) 54 (17.8%)

Ventricular fibrillation or
tachycardia

31 (9.7%) 26 (8.6%)

Unknown 29 (9.0%) 22 (7.3%)
Estimated duration of chest

compressions
0.1331

N 312 300
Median [Q1 - Q3] 24.5 [10.5 -

40.0]
25.5 [12.5 - 48.0]

Time of ROSC 0.9612

Day 222 (69.2%) 209 (69.0%)
Night 99 (30.8%) 94 (31.0%)

Day of ROSC 0.6982

Weekday 248 (77.3%) 238 (78.5%)
Weekend 73 (22.7%) 65 (21.5%)

Total known adrenaline
(epinephrine) doses3

0.3371

N 320 302
Median [Q1 - Q3] 3.0 [2.0 - 6.0] 4.0 [2.0 - 7.0]

ECMO4 87 (27.1%) 97 (32.0%) 0.1792

1 P-value is based on the Wilcoxon rank-sum test.
2 Chi-squared test of no association.
3 Administered by EMS and at hospital.
4 Started at or before treatment and not stopped before treatment initiation.
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differ [hypothermia, 146/314(46%) versus normothermia, 159/
298(53%), p= 0.10; (see Supplemental Table 2).

Discussion

In this analysis of pooled data from two identically conducted tar-
geted temperature management randomized clinical trials [1,2], there

was no significant improvement in survival with favourable neurobe-
havioral outcome, defined as a VABS-II score ≥70 for hypothermia
(28%) versus normothermia (26%) groups. Additionally, the best
change from baseline outcome, defined as a VABS-II score reduction by
no more than 15 points (1 SD) at one year, was similar for hypothermia
(22%) and normothermia (21%) groups. Mortality at one year was not
statistically different by temperature intervention, although earlier

Table 2
Primary and Secondary Outcomes.*.

Treatment Assigned

Hypothermia Normothermia Risk Difference Relative Risk P Value

Primary Outcome
Survival at 12 months with VABS≥ 70 75/271 (28%) 63/246 (26%) 2.1 (-5.6, 9.7) 1.08 (0.81, 1.42) 0.61†

One year status (detailed) 0.40‡

Death 152/271 (56%) 155/246 (63%)
Profound disability (VABS < 45 or lowest possible)§ 18/271 (7%) 11/246 (4%)
Moderate to severe disability (VABS 45-69)¶ 26/271 (10%) 17/246 (7%)
Good functional status (VABS≥ 70)‖ 75/271 (28%) 63/246 (26%)

Secondary Outcomes
Survival at 12 months 138/317 (44%) 113/297 (38%) 5.5 (-2.3, 13.2) 1.15 (0.95, 1.38) 0.15†

One year change from baseline 0.20**

Death 179/315 (57%) 184/287 (64%)
Lowest possible VABS score 7/315 (2%) 1/287 (0%)
VABS decreased > 30 points 31/315 (10%) 23/287 (8%)
VABS decreased 16-30 points 28/315 (9%) 18/287 (6%)
VABS decreased no more than 15 points or improved 70/315 (22%) 61/287 (21%)

* The primary outcome was evaluated in patients with a baseline Vineland Adaptive Behaviour Scales, Second Edition (VABS-II), score of 70 or higher at 12
months (scores on the VABS-II range from 20 to 160, with higher scores indicating better function). The secondary outcomes were evaluated in all patients with
available data. Denominators reported are for patients whose outcomes were known. CI denotes confidence interval.

† The P value was calculated by means of the Cochran-Mantel-Haenszel test, with adjustment for age category and study.
‡ The P value was calculated by means of the Mann-Whitney test on the basis of the 1-yr continuous VABS-II score, stratified according to age category and study.

Deceased patients and those with the lowest possible VABS-II score were assigned ranks of -2000 and -1000, respectively (i.e., the worst possible scores).
§ Profound disability was defined as a VABS-II score of less than 45 or the lowest possible score.
¶ Moderate-to-severe disability was defined as a VABS-II score of.45–69.
‖ Good functional status was defined as a VABS-II score of 70 or higher.
** The P value was calculated by means of the Mann-Whitney test on the basis of the continuous change in VABS-II score, stratified according to age category and

study. Deceased patients and those with the lowest possible VABS-II score were assigned ranks of -2000 and -1000, respectively (i.e., the worst possible scores).

Fig. 1. a) Probability of survival to one year following cardiac
arrest, according to assigned treatment. The two lines represent
Kaplan-Meier survival rates from 0 to 365 days after cardiac
arrest for patients in each study arm (p= 0.045 for a log-rank
test, stratified by age category and study, comparing survival
distributions between treatment arms). Numbers above the x-
axis represent numbers of patients at risk (alive and followed) in
each study arm at each 30-day interval. b) Probability of sur-
vival past day 3 to one year following cardiac arrest, according
to assigned treatment. The two lines represent Kaplan-Meier
survival rates from 4 to 365 days after cardiac arrest for patients
in each study arm (p= 0.912 for a log-rank test, stratified by
age category and study, comparing survival distributions be-
tween treatment arms). Numbers above the x-axis represent
numbers of patients at risk (alive and followed) in each study
arm at each 30-day interval.

B.R. Scholefield et al. Resuscitation 133 (2018) 101–107

104



deaths in the first three days of intervention were observed with nor-
mothermia. Hypothermia and

normothermia groups had comparable safety profiles for blood
product utilization, infection, serious cardiac arrhythmia and 28-day
mortality.

We were able to perform a pooled randomized control trial (RCT)
analysis, as opposed to an individual patient data (IPD) meta-analysis,
because the RCT protocols were identical with respect to all elements
including data definitions, collection and handling procedures, and
primary and secondary outcomes. In addition, the trials were initiated
concurrently and predominantly at sites that participated in both
THAPCA trials, minimizing temporal and site-specific effects between
trials. The justification for conducting separate trials stemmed from
analysis of a pre-trial planning cohort study that found differences in
the aetiology of arrest, initial cardiac arrest rhythm, resuscitation skills
of initial responders and survival outcomes between paediatric out-of-
hospital and in-hospital cardiac arrest populations [4,15,16]. In fact,
the substantial difference in proportion of favourable outcomes be-
tween the IH and OH cohorts provides support for the decision to
conduct separate trials in these two paediatric populations.

The current investigation was planned and approved by the trial
executive committee prior to

completion of either trial. By combining the two trial datasets in the
current investigation, we were able to further explore the impact of
hypothermia versus normothermia to ameliorate severe hypoxic-is-
chemic injury following paediatric cardiac arrest in a sample approxi-
mately twice the size of the original trials.

However, in the pooled population as in the individual trials, there
were no statistically significant differences for the primary or two
secondary outcomes. The larger sample size gained by combining the
two trials leads to more precise confidence intervals for treatment effect
than in each individual trial, more conclusively ruling out even mod-
erate benefits of hypothermia.

In this study, both treatment arms received 120 h of active tem-
perature control, to prevent fever (temperature> 37.5 °C), using sur-
face temperature control devices, pharmacological sedation and neu-
romuscular blocking medication as required. Our findings are similar to
a large adult trial of targeted temperature management (TTM) of 33 °C

versus 36 °C for 36 h [17], which found no statistically significant dif-
ference in outcomes. However, neither the adult nor the paediatric
trials compared active TTM with no active temperature control. Recent
reports of actual practice temperature management of adult cardiac
arrest describe a change in TTM from 33 °C to 36 °C [18–20]. This
practice has been accompanied by trends in less active cooling, greater
exposure to fever, and worse clinical outcomes [20]. The reports sug-
gest an actual practice ‘belief’ that fever prevention can be achieved
without protocol guided sedation, neuromuscular blockage and servo
regulated cooling devices. A large ongoing adult trial of hypothermia
(33 °C) versus standard care avoiding early fever (> 37.8 °C) manage-
ment after cardiac arrest may provide needed information to address
this critical question (ClinicalTrials.gov Identifier: NCT02908308).

Although there was no overall difference in survival at 12 months,
we found a difference in time to death between hypothermia and nor-
mothermia treatment groups (Fig. 1a; p= 0.045). This difference was
explained by more early deaths in the normothermia group during days
0 through 3 (Fig. 1c; p= 0.003).

There are at least two reasons for this observation. First, for day 0,
increased deaths due to cardiac failure in the normothermia group was
observed, although this trend largely balanced out by day 3 (Table 3).
This suggests hypothermia may have been protective or provided ad-
ditional inotropic effects for the myocardium in the early post arrest
period. Early hypotension in the first 6 to 12 h post cardiac arrest is
associated with worse outcome in children comatose after cardiac arrest
[21,22]. Hypothermia has been reported to reduce inotropic or vaso-
pressor requirement and reduce/rebalance myocardial work to oxygen
demand [23]. Following adult cardiac arrest, hypothermia increases
systemic vascular resistance leading to reduced vasopressor use and
lower oxygen consumption [24]. In children, hypothermia has been
reported as a useful salvage therapy for severe low cardiac output
syndrome post congenital heart disease surgery [25]. The second
identifiable factor associated with hypothermia was lower numbers of
deaths through day 3 that were attributable to brain death or to poor
neurological prognosis [hypothermia 10% (31/321) versus nor-
mothermia 19% (57/303); p= 0.001](Table 3). This likely reflected
delays in neurological prognostic and brain death assessments in hy-
pothermic patients until at least 24 h after normothermia was achieved;

Table 3
Cause of Death by Study Day.

Hypothermia

Study Day

0
(N=5)

1
(N=30)

2
(N=17)

3
(N=14)

4
(N=21)

5
(N=9)

> 5
(N=83)

Overall
(N= 179)

Cause of Death
Cardiovascular failure/futility 4 (80.0%) 8 (26.7%) 7 (41.2%) 2 (14.3%) 1 (4.8%) 0 (0.0%) 16 (19.3%) 38 (21.2%)
Brain death declared 0 (0.0%) 3 (10.0%) 2 (11.8%) 4 (28.6%) 12 (57.1%) 6 (66.7%) 17 (20.5%) 44 (24.6%)
Withdrawal for poor neurologic prognosis 0 (0.0%) 11 (36.7%) 5 (29.4%) 6 (42.9%) 8 (38.1%) 3 (33.3%) 31 (37.3%) 64 (35.8%)
Respiratory failure/futility 0 (0.0%) 1 (3.3%) 1 (5.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (3.6%) 5 (2.8%)
Withdrawal for other system failure 1 (20.0%) 3 (10.0%) 2 (11.8%) 2 (14.3%) 0 (0.0%) 0 (0.0%) 6 (7.2%) 14 (7.8%)
Other/Unknown 0 (0.0%) 4 (13.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 10 (12.0%) 14 (7.8%)

Normothermia

Study Day

0
(N=19)

1
(N=29)

2
(N=22)

3
(N=22)

4
(N=18)

5
(N=10)

> 5
(N=65)

Overall
(N= 185)

Cause of Death
Cardiovascular failure/futility 12 (63.2%) 6 (20.7%) 2 (9.1%) 3 (13.6%) 1 (5.6%) 2 (20.0%) 20 (30.8%) 46 (24.9%)
Brain death declared 0 (0.0%) 11 (37.9%) 11 (50.0%) 8 (36.4%) 7 (38.9%) 5 (50.0%) 4 (6.2%) 46 (24.9%)
Withdrawal for poor neurologic prognosis 3 (15.8%) 9 (31.0%) 6 (27.3%) 9 (40.9%) 9 (50.0%) 2 (20.0%) 20 (30.8%) 58 (31.4%)
Respiratory failure/futility 0 (0.0%) 1 (3.4%) 0 (0.0%) 1 (4.5%) 0 (0.0%) 0 (0.0%) 8 (12.3%) 10 (5.4%)
Withdrawal for other system failure 2 (10.5%) 2 (6.9%) 2 (9.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 6 (9.2%) 12 (6.5%)
Other/Unknown 2 (10.5%) 0 (0.0%) 1 (4.5%) 1 (4.5%) 1 (5.6%) 1 (10.0%) 7 (10.8%) 13 (7.0%)
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this common practice stemmed from consideration that sedative drugs
administered concurrently with hypothermia could have prolonged
clearance and thereby confound clinical assessments [26].

There are limitations with the current study. As described pre-
viously, caregivers and research staff in the ICU were aware of treat-
ment assignments of patients, although the primary outcome one year
VABS-

II interview assessments were performed by individuals who were
unaware of treatment group assignment [1,2]. We could not rule out
the possibility of earlier death or determination by clinical teams of
futility in the normothermia group, as discussed above. Although
planned prior to the completion of the two THAPCA trials, this pooled
analysis was performed after publication of the two primary trials when
the results were known to the investigators. A major strength of this
study was that pooling of individual patient data analysis was possible
due to identical protocols and data definitions. The larger sample size
provided greater statistical power to show potential differences in
neurobehavioral, mortality and safety outcomes.

The inclusion and exclusion criteria selected patients with identical
high risk of neurological morbidity and mortality. The final inclusion of
15% (624/4146) of initially screened patients may limit the general-
ization of the study findings to all paediatric cardiac arrest patients.
However, the current pooled study included a more heterogeneous and
generalizable population than did either individual trial. Inclusion of
patients stratified with less severe injury, excluding the most severe
hypoxic ischemic arrests (e.g. sudden infant death syndrome), or se-
lecting a more homogeneous population (e.g. drowning) might allow
more focused assessment of TTM efficacy. Unanswered questions re-
main regarding optimal evaluation of TTM. Future trials should con-
sider different durations and depth of cooling [27–29], earlier onset of
TTM, more precise patient stratification based on acute brain injury
biomarkers, and adjunctive neuroprotective agents.

In conclusion, this larger pooled cohort of patients who were co-
matose after paediatric cardiac arrest from in-hospital or out-of-hospital
locations, therapeutic hypothermia did not confer a statistically sig-
nificant benefit in survival with a good functional outcome compared to
therapeutic normothermia. Both hypothermia and normothermia active
temperature interventions had similar severe adverse event profiles.
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